

Acceleration (가속도) 예제 따라하기

예제설명

Acceleration (가속도) 센서를 이용하여 로봇이 각각 앞으로 넘어졌을 때와 뒤로 넘어졌을 때 일어나는 프로그래밍을 해봅니다. 가속도 센서는 제어기 뒷 커버를 열고 넣을 수 있는 모듈 형태로서 Gyro센서 모듈과 결합되어 있습니다. (Z축 표시되어있는 그림 삽입)

- 로봇이 엎드릴 때 Z축은 "+" 가속도가 붙고 그 값은 약 +256 입니다.
- 로봇이 누울때 Z축은 "-" 가속도가 붙고 그 값은 약 -256 입니다.

(256 은 약 1g 중력값을 나타냅니다.)

01 변수 지정

로봇을 동작시킨다는 것은 로봇의 서보 모터를 동작 시킨다는 의미입니다. 서보가 스스로 움직일 수 있는 상태로 값을 지정해주어야 합니다.

Data > Variable 모듈을 클릭합니다.

02 시작

모듈의 왼쪽 연결선을 Start Point 에 드래그하여 정확 히 도킹을 시킵니다.

03 프로그래밍 시작

모듈과 Start Point 가 정확히 도킹하면 왼쪽과 같이 활성화된 칼라 이미지 모듈로 변합니다. 그럼 프로그래밍이 시작되었다는 의미입니다.

V	C-lik	e	Graphic	
1 void main()				
2 {				
3 SERVO_TorgCtrl[254]				
4 motionn	eady(0))		
5 delay(1	5 delay(1500)			
6 while(tr	ue)			
7 {				
8	8 if((MPSU_ADCType1 == 2 && MPSU_ADCVal1 == 1))			
9	{			
10	motion(0)			
11	waitwhile(MF	SU_PlayingMotior	1)	
12	}			
13	else			
14	{			
15	if((MPSULAE)CType1 == 2 && N	(PSU_ADCVal1 == 0))	
16	{			
17	for(i	= 1 ~ 2)		
18	{			
19		motion(1)		

04 전체 프로그래밍

가속도 센서를 이용하여 넘어졌던 로봇이 일어나는 프로그래밍을 해봅니다.

05 C-Like 보기

오른쪽 상단의 Graphic 탭에서 C-like 탭을 클릭하 면 왼쪽과 같은 Task 프로그래밍 화면이 나옵니다. 중력가속도를 이용한 전체 프로그래밍 화면입니다. C와 유사한 문법 구조를 가지고 있으므로 C 문법 선 행학습 효과도 있습니다.

각 모듈별로 클릭하면 커서가 따라서 움직이므로 모듈 별로 Text로 어떻게 변환하는지 확인할 수 있습니다,

168

06 상수 설정

서보 모터를 스스로 움직일 수 있는 상태로 만드는 과정입니다.

Variable Type 을 Constant 로 선택합니다. 속성중에 Constant Value 값을 96 으로 설정합니다. 서보의 TorqControl 레지스터에 96(0x60) 이라는 값

이 들어가면 서보가 움직일 수 있는 상태가 됩니다.

그 값은 Output 커넥터를 통하여 뒤 모듈의 토크값 에 전달합니다.

앞에서 받은 96 상수값을 모든 서보에 적용하는 과 정입니다.

Variable 〉 Type : Servo RAM을 선택합니다. Servo RAM : TorqCtrl 을 선택합니다. Servo ID : 254 를 선택합니다. 254는 연결되어있는 모든 서보에 적용하겠다는 의미입니다.

08 반복

Forever 무한 반복을 설정합니다.

09 가속도 설정 (엎드려 넘어졌을 때)

가속도는 로봇이 반듯하게 서있을 때 0 값을 나타냅니다. 로봇이 앞으로 엎드려 넘어졌을 때 +256값을 나타내고, 뒤로 누울 때는 -256 값이 나타납니다.

따라서 +256 값에 근접했을 때 로봇이 넘어졌다고 판 단할 수 있습니다. 그 기준값을 +220 으로 설정합니다.

+220 보다 큰 값이면 로봇이 엎드려 넘어졌다고 판단 할 수 있습니다.

Sensor > Dynamic Sensor 모듈을 선택합니다.

Sensor Type : Acceleration 를 선택합니다. 가속도 센서입니다. Axis : Z 축으로 설정합니다. Compare : > 로 설정합니다. Value : +220 으로 설정합니다. +220 보다 크면 앞으로 엎드려 넘어졌다는 설정이 완 료되었습니다.

10 lf 분기문

True 일때는 뒤로 일어나게 하고, False 일때는 다음 조건문으로 진행하도록 프로그래밍합니다.

11 뒤로 일어나기 모션

로봇이 앞으로 엎어져 있으므로 로봇의 뒤로 일어나 는 동작을 삽입해야합니다. 5번 모션이 뒤로 일어나는 모션입니다.

Motion 〉 Move 모듈을 선택합니다. Play/Stop : Play 를 선택합니다. Motion Index : 5 번을 선택합니다. 5번은 뒤로 일어 나는 모션입니다. Motion Ready : True 를 선택합니다. 모션 동작 준비 과정입니다.

12 Delay

Motion Ready 동작이 끝나기 전에 진행하는 것을 방 지하기위해 Delay 값을 1.5 초로 설정합니다

Motion Ready 를 False 로 선택하면 뒤로 일어나기 모 션이 실행됩니다.

14 중력가속도 설정 (뒤로 넘어졌을 때)

중력가속도는 로봇이 반듯하게 서있을 때 0 값을 나 타냅니다.

로봇이 앞으로 엎드려 넘어졌을 때 +256값을 나타내고, 뒤로 누울 때는 -256 값이 나타납니다.

따라서 -256 값에 근접했을 때 로봇이 넘어졌다고 판 단할 수 있습니다. 그 기준값을 -220 으로 설정합니다.

-220 보다 작은 값이면 로봇이 뒤로 넘어져서 누워있 다고 판단할 수 있습니다.

Sensor > Dynamic Sensor 모듈을 선택합니다.

Sensor Type : Acceleration를 선택합니다. 가속도 센 서입니다. Axis : Z 축으로 설정합니다. Compare : 〈 로 설정합니다. Value : -220 으로 설정합니다. -220 보다 작으면 뒤로 넘어져서 누워졌다는 설정이 완료되었습니다.

15 lf 분기문

True 일때는 앞으로 일어나는 프로그래밍입니다.

16 모션 동작준비

모션이 동작하기 위해서는 준비과정을 거칩니다. 이전 로봇 모션에서 갑작스럽게 변동하면 로봇에 무리가 가 해질 수 있습니다. 따라서 현재 실행하고자 하는 로봇의 첫 모션으로 천천히 이동시키는 과정입니다. Motion Ready 가 True 이면 모션 첫 장면을 준비하는 것 이고, False 이면 모션이 동작합니다.

Motion 〉 Move 모듈을 선택합니다. Play/Stop : Play 를 선택합니다. Motion Index : 4 번을 선택합니다. 4번은 앞으로 일어 나는 모션입니다. Motion Ready : True 를 선택합니다. 모션 동작 준비 과정입니다.

17 Delay

Motion Ready 동작이 끝나기 전에 진행하는 것을 방지 하기 위해 Delay 값을 1.5 초로 설정합니다

18 앞으로 일어나기 모션 실행

Motion Ready 를 False 로 선택하면 앞으로 일어나 기 모션이 실행됩니다

19 넘어진 로봇 일어나기

Z축 가속도 값을 기준으로 로봇의 넘어짐을 판단하고, 넘어진 위치에 따라 각각 일어나는 동작을 실행하는 프 로그래밍입니다.

20 모션 동작 확인

Loop 는 계속적인 반복을 의미합니다. Move 명령을 내리고 나서 실제 모션이 실행되어 완료되기 까지는 시간이 걸리므로 loop안에 Move모듈 하나만을 넣고 실행하면 모션을 이미 실행중임에도 loop를 계속 돌 면서 모션실행 명령을 반복하게 됩니다.

이렇게 되면 Move모듈을 만난 횟수와 실제모션을 실행한 횟수가 달라집니다.

따라서 실행한 모션이 끝날때까지 기다렸다가 다시 loop의 처음으로 돌아가게 하는 편이 더 정확합니다. Variable > MPSU RAM Data 에 들어가면 Playing Motion 이 있습니다. Playing Motion 은 로봇이 모 션을 실행중인지 확인하는 변수입니다. 그 Playing Motion에 Wait 를 걸어주면 로봇의 동작이 끝날 때까 지 Loop는 기다려줍니다.

Data 〉 Variable 모듈을 선택합니다. Type : MPSU RAM Data 를 선택합니다. MPSU RAM : Playing Motion 을 선택합니다. Output 커넥터 값을 뒤에 Wait 모듈에 연결합니다. 모션이 끝날 때까지 기다리겠다는 의미입니다.

21 Wait

모션이 끝날때까지 기다립니다. 모션이 끝나면 다시 처음으로 돌아가 모션을 반복 합니다.

22 전체 프로그래밍

로봇이 앞으로 넘어졌을 때와 뒤로 넘어졌을 때를 판단 하여 각각 뒤로 일어나기와 앞으로 일어나기 모션을 실 행하는 프로그래밍 입니다.

23 컴파일, 다운로드, 실행

왼쪽 클릭하여 컴파일 시킵니다. 에러가 없으면 오른 쪽 클릭하여 로봇에 다운로드 시킵니다. 다운로드 완 료되면 가운데 화살표 실행버튼을 눌러 로봇에서 실 행시킵니다.

24 로봇동작

로봇이 앞으로 넘어져 있으면 뒤로 일어나고, 로봇이 뒤로 넘어져 있으면 앞으로 일어납니다.